Variable Nav1.5 Protein Expression from the Wild-Type Allele Correlates with the Penetrance of Cardiac Conduction Disease in the Scn5a+/− Mouse Model

نویسندگان

  • Anne-Laure Leoni
  • Bruno Gavillet
  • Jean-Sébastien Rougier
  • Céline Marionneau
  • Vincent Probst
  • Solena Le Scouarnec
  • Jean-Jacques Schott
  • Sophie Demolombe
  • Patrick Bruneval
  • Christopher L. H. Huang
  • William H. Colledge
  • Andrew A. Grace
  • Hervé Le Marec
  • Arthur A. Wilde
  • Peter J. Mohler
  • Denis Escande
  • Hugues Abriel
  • Flavien Charpentier
چکیده

BACKGROUND Loss-of-function mutations in SCN5A, the gene encoding Na(v)1.5 Na+ channel, are associated with inherited cardiac conduction defects and Brugada syndrome, which both exhibit variable phenotypic penetrance of conduction defects. We investigated the mechanisms of this heterogeneity in a mouse model with heterozygous targeted disruption of Scn5a (Scn5a(+/-) mice) and compared our results to those obtained in patients with loss-of-function mutations in SCN5A. METHODOLOGY/PRINCIPAL FINDINGS Based on ECG, 10-week-old Scn5a(+/-) mice were divided into 2 subgroups, one displaying severe ventricular conduction defects (QRS interval>18 ms) and one a mild phenotype (QRS< or = 18 ms; QRS in wild-type littermates: 10-18 ms). Phenotypic difference persisted with aging. At 10 weeks, the Na+ channel blocker ajmaline prolonged QRS interval similarly in both groups of Scn5a(+/-) mice. In contrast, in old mice (>53 weeks), ajmaline effect was larger in the severely affected subgroup. These data matched the clinical observations on patients with SCN5A loss-of-function mutations with either severe or mild conduction defects. Ventricular tachycardia developed in 5/10 old severely affected Scn5a(+/-) mice but not in mildly affected ones. Correspondingly, symptomatic SCN5A-mutated Brugada patients had more severe conduction defects than asymptomatic patients. Old severely affected Scn5a(+/-) mice but not mildly affected ones showed extensive cardiac fibrosis. Mildly affected Scn5a(+/-) mice had similar Na(v)1.5 mRNA but higher Na(v)1.5 protein expression, and moderately larger I(Na) current than severely affected Scn5a(+/-) mice. As a consequence, action potential upstroke velocity was more decreased in severely affected Scn5a(+/-) mice than in mildly affected ones. CONCLUSIONS Scn5a(+/-) mice show similar phenotypic heterogeneity as SCN5A-mutated patients. In Scn5a(+/-) mice, phenotype severity correlates with wild-type Na(v)1.5 protein expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TGF-β1-mediated fibrosis and ion channel remodeling are key mechanisms in producing the sinus node dysfunction associated with SCN5A deficiency and aging.

BACKGROUND Mutations in the cardiac Na(+) channel gene (SCN5A) can adversely affect electric function in the heart, but effects can be age dependent. We explored the interacting effects of Scn5a disruption and aging on the pathogenesis of sinus node dysfunction in a heterozygous Scn5a knockout (Scn5a(+/-)) mouse model. METHODS AND RESULTS We compared functional, histological, and molecular fe...

متن کامل

Penetrance of monogenetic cardiac conduction diseases. A matter of conduction reserve?

Loss-of-function mutations in the SCN5a gene coding for the human Nav1.5 cardiac sodium channel, which lead to decreased peak sodium current, are associated with cardiac conduction defects (CCD), progressive cardiac conduction disease [1] or Brugada syndrome [2]. However, despite the strong linkage of sodium channel mutations to the disease in probands, the same mutation is often found in non-a...

متن کامل

Normal interventricular differences in tissue architecture underlie right ventricular susceptibility to conduction abnormalities in a mouse model of Brugada syndrome.

Aims Loss-of-function of the cardiac sodium channel NaV1.5 is a common feature of Brugada syndrome. Arrhythmias arise preferentially from the right ventricle (RV) despite equivalent NaV1.5 downregulation in the left ventricle (LV). The reasons for increased RV sensitivity to NaV1.5 loss-of-function mutations remain unclear. Because ventricular electrical activation occurs predominantly in the t...

متن کامل

Cardiac sodium channel Nav1.5 and its associated proteins.

The main cardiac voltage-gated Na+ channel, Nav1.5, plays a key role in generation of the cardiac action potential (cardiac excitability) and propagation of the electrical impulse in the heart (cardiac conduction). During the past decade, numerous mutations in SCN5A, the gene, encoding Nav1.5, were found in patients with different pathologic cardiac phenotypes such as the congenital long QT syn...

متن کامل

Ankyrin-G coordinates intercalated disc signaling platform to regulate cardiac excitability in vivo.

RATIONALE Nav1.5 (SCN5A) is the primary cardiac voltage-gated Nav channel. Nav1.5 is critical for cardiac excitability and conduction, and human SCN5A mutations cause sinus node dysfunction, atrial fibrillation, conductional abnormalities, and ventricular arrhythmias. Further, defects in Nav1.5 regulation are linked with malignant arrhythmias associated with human heart failure. Consequently, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010